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A B S T R A C T

Non-invasive brain stimulation (NIBS) has become a common method to study the interrelations between the
brain and language functioning. This meta-analysis examined the efficacy of transcranial magnetic stimulation
(TMS) and direct current stimulation (tDCS) in the study of language production in healthy volunteers. Forty-five
effect sizes from 30 studies which investigated the effects of NIBS on picture naming or verbal fluency in healthy
participants were meta-analysed. Further sub-analyses investigated potential influences of stimulation type,
control, target site, task, online vs. offline application, and current density of the target electrode. Random
effects modelling showed a small, but reliable effect of NIBS on language production. Subsequent analyses
indicated larger weighted mean effect sizes for TMS as compared to tDCS studies. No statistical differences for
the other sub-analyses were observed. We conclude that NIBS is a useful method for neuroscientific studies on
language production in healthy volunteers.

1. Introduction

Transcranial magnetic (TMS) and direct current stimulation (tDCS)
are non-invasive brain stimulation (NIBS) techniques that are increas-
ingly used to investigate causal relationships between language func-
tions and their underlying neuronal processes. The aim of this com-
bined review and meta-analysis is to examine the efficacy and
reliability of NIBS as an intervention method to study the neural cor-
relates of language production in healthy volunteers. Prior meta-ana-
lyses on the effects of transcranial direct current stimulation (tDCS) on
verbal fluency and picture naming have provided diverging results.
Both Horvath, Forte, and Carter (2015) and Price, McAdams, Grossman,
and Hamilton (2015) analysed performance changes in semantic pro-
duction and word learning tasks, with the first finding no effect, but the
latter reporting a reliable modulation of task performance. Further-
more, Westwood and Romani (2017) found no effect of tDCS on lan-
guage production performance across production and reading tasks.
Our present review offers an overview and meta-analysis of studies
which measured changes in verbal fluency and picture-naming perfor-
mance during or following the administration of tDCS or transcranial
magnetic stimulation (TMS). Furthermore, by differentiating between
different experimental parameters, we aim to provide a more detailed
picture with respect to the usefulness of NIBS studies that investigate
language production in healthy volunteers.

Picture naming (i.e., the production of a noun or verb in response to

a visually presented stimulus) is the most direct way to measure lan-
guage production performance. Cortical activity during this task has
been located in a large left frontotemporal network stretching from
interior frontal to posterior superior temporal and inferior parietal re-
gions (Indefrey, 2011; Indefrey & Levelt, 2004). Using TMS, which
applies an ultra-short electromagnetic pulse that creates an electric
current in superficial cortical nerve tissue, an engagement of the pos-
terior superior temporal gyrus (pSTG), middle temporal gyrus (MTG),
anterior temporal lobe (ATL), and inferior frontal gyrus (IFG) has been
demonstrated (Acheson, Hamidi, Binder, & Postle, 2011; Mottaghy
et al., 1999; Pobric, Jefferies, & Lambon Ralph, 2007, 2010;
Schuhmann, Schiller, Goebel, & Sack, 2009, 2012; Shinshi et al., 2015;
Sparing et al., 2001; Töpper, Mottaghy, Brügmann, Noth, & Huber,
1998; Wheat et al., 2013). Furthermore, cortical excitability can be
modulated by applying a constant weak electric current between two
electrodes affixed on the scalp. Although the vast majority of the
electric field is shunted, a small yet significant portion of the field
reaches the superficial layers of the cortex (Nitsche et al., 2008). Re-
search on the human motor cortex has shown that anodal tDCS in-
creases spontaneous neural firing and cortical excitability, while cath-
odal tDCS reduced spontaneous neural firing and lowered cortical
excitability (Nitsche & Paulus, 2000; Stagg & Nitsche, 2011). Its po-
tential to modulate underlying cortical tissue together with the facts
that tDCS is not associated with serious adverse advents and allows for
better (double) blinding procedures as compared to TMS has
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contributed to its increased use in cognitive neuroscience. Indeed, a
number of studies have reported significant effects from applying an-
odal tDCS over the left STG and dorsolateral prefrontal cortex (DLPFC)
on object and action naming (Fertonani, Brambilla, Cotelli, & Miniussi,
2014; Fertonani, Rosini, Cotelli, Rossini, & Miniussi, 2010; Sparing,
Dafotakis, Meister, Thirugnanasambandam, & Fink, 2008). Interest-
ingly, NIBS typically only affects naming latencies, but not error rates,
in picture naming tasks.

Next to the classic picture naming tasks, a number of studies have
also investigated the effects of tDCS and TMS on naming latencies in the
semantic blocking and picture-word interference paradigm. In semantic
blocking tasks, naming latencies are compared between semantically
homogeneous (i.e., containing words from the same semantic category)
and heterogeneous blocks (i.e., semantically unrelated words).
Retrieving and producing semantically related words in a row typically
results in longer naming latencies compared to producing semantically
unrelated words. This semantic interference (SI) effect is taken as evi-
dence for competitive selection of target responses (e.g., Belke, Meyer,
& Damian, 2005; Damian, Vigliocco, & Levelt, 2001; Kroll & Stewart,
1994) and has been localised predominantly in the left temporal cortex
(de Zubicaray, Johnson, Howard, & McMahon, 2014; Indefrey, 2011).
Confirming this, studies applying tDCS (Meinzer, Yetim, McMahon, &
de Zubicaray, 2016; Pisoni, Papagno, & Cattaneo, 2012) or TMS
(Krieger-Redwood & Jefferies, 2014) before or during semantic
blocking tasks reported an involvement of pSTG, but not IFG. These
studies provide first evidence that processes involving lexical selection
and retrieval can be targeted using NIBS. However, it should be kept in
mind that behavioural effects were numerically small (see also
Westwood, Olson, Miall, Nappo, & Romani, 2017, Experiment 2, for
statistical null effects of tDCS across the left IFG in a semantic blocking
task).

The picture-word interference (PWI) paradigm allows for the
chronometric investigation of speech production processes on the
timescale of tens of milliseconds (e.g., Damian & Martin, 1999;
Schriefers, Meyer, & Levelt, 1990). Participants are asked to name
pictures while ignoring a visually or auditorily presented distractor
word, the relatedness of which to the target word is systematically
varied. Typically, a semantically related distractor (e.g., “cow” when
the target word is “sheep”) increases naming latencies compared to an
unrelated distractor, while a phonologically related distractor (e.g.,
“sheet”) speeds up naming latencies. Varying the onset of the distractor
relative to picture presentation (stimulus-onset asynchrony, SOA) en-
ables researchers to examine the time course of speech planning with

respect to the individual representational levels involved. Recall that
lexical-semantic processing has been associated with the left MTG,
while phonological processing has been located in the left STG
(Indefrey, 2011; Indefrey & Levelt, 2004). In line with this, Henseler,
Mädebach, Kotz, and Jescheniak (2014) reported a decrease of asso-
ciative facilitation (i.e., when the distractor is associatively related vs.
unrelated to the target word, e.g. “boat” and “port”) under MTG as
opposed to IFG and sham stimulation (anodal tDCS). Furthermore,
Pisoni, Cerciello, Cattaneo, and Papagno (2017) found reduced pho-
nological facilitation following anodal tDCS to the STG, but no such
effect when IFG was stimulated.

Finally, a number of studies also measured performance changes in
response to TMS or tDCS in verbal fluency tasks (see also Horvath et al.,
2015; Price et al., 2015). In these tasks, participants are asked to pro-
duce as many words as possible from a given semantic category (i.e.,
semantic fluency) or starting with a given letter (i.e., letter fluency)
within a time constraint. High fluency scores reflect unimpaired speech
production on the semantic or phonological level, respectively. Neu-
roimaging evidence has shown that both tasks involve left frontal,
temporal, and parietal regions, with dissociable activity in the MTG in
the semantic and in the IFG in the letter fluency task (Birn et al., 2010).
Previous studies investigating the effect of tDCS on verbal fluency have
provided ambiguous results. While some studies report increased verbal
fluency during or after tDCS (IFG: Cattaneo, Pisoni, & Papagno, 2011;
Iyer et al., 2005; Penolazzi, Pastore, & Mondini, 2013; Pisoni,
Mattavelli, et al., 2017; DLPFC: Vannorsdall et al., 2012), others did not
obtain such an effect (IFG: Ehlis, Haeussinger, Gastel, Fallgatter, &
Plewnia, 2016; Vannorsdall et al., 2016; DLPFC: Cerruti & Schlaug,
2009).

To date, there are still many unknowns about the influence of dif-
ferent stimulation parameters on the behavioural (language produc-
tion) effect induced by NIBS. In order to quantify the overall effect of
NIBS observed across studies and to examine individual subsets con-
trasting different experimental parameters, we performed a meta-ana-
lysis evaluating the behavioural performance changes during language
production tasks in healthy participants. With respect to language
production, rather small effect sizes of tDCS treatment for clinically
relevant populations (Hartwigsen & Siebner, 2013) raise the question
whether this method is a useful tool in altering language production in
healthy speakers, and previous meta-analyses are inconclusive
(Horvath et al., 2015; Price et al., 2015; Westwood & Romani, 2017), as
they analysed fewer studies and used diverging methods. Here, unlike
these previous studies, we investigated the absolute effect sizes

Fig. 1. Flowchart of literature search for the meta-analysis.
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obtained by the application of tDCS or TMS. The direction of beha-
vioural effects caused by NIBS (i.e., improving or disrupting perfor-
mance) is difficult to predict. For instance, TMS across left temporal and
inferior parietal regions has been shown to both enhance (Acheson
et al., 2011; Mottaghy et al., 1999; Sparing et al., 2001; Töpper et al.,
1998) and impede picture naming performance (Pobric et al., 2007,
2010; Schuhmann et al., 2012). Furthermore, the dissociation of per-
formance improvement in response to anodal tDCS as opposed to per-
formance decline in response to cathodal tDCS as documented for the
motor cortex (Nitsche & Paulus, 2000) has been shown to be more
complex for higher cognitive functions (Hill, Fitzgerald, & Hoy, 2016;
Jacobson, Koslowsky, & Lavidor, 2012). For example, Fertonani et al.
(2010) found (descriptive) interference in picture naming from cath-
odal tDCS in Experiment 1, but (descriptive) facilitation from cathodal
tDCS in Experiment 2. Furthermore, a recent study reported significant
facilitation from cathodal tDCS across the left pSTG in a lexical decision
task (Brückner & Kammer, 2017). Given these inconsistent result pat-
terns in both TMS and tDCS studies, we centred this meta-analysis on
the question whether NIBS changes overall performance compared to a
baseline condition, regardless of whether this change is positive or
negative. Furthermore, to our knowledge, no meta-analysis has yet
quantified the efficacy of TMS on inducing changes in language pro-
duction in healthy speakers. Finally, by contrasting subsets of studies in
regard to a number of methodological aspects (i.e., stimulation site,
control condition, experimental tasks, online vs. offline stimulation,
and current density of the target electrode), we intend to investigate
more detailed aspects of applying NIBS in healthy speakers.

2. Methods

2.1. Study selection and analysis

To find eligible studies, we first conducted a literature search in
PubMed, querying for the any combination of the search terms (“lan-
guage”) AND (“tDCS”, “TMS”, “transcranial direct current stimulation”,
OR “transcranial magnetic stimulation”) published up until January
2018. Additionally, the reference lists of previous reviews and meta-
analyses (Hartwigsen, 2015; Horvath et al., 2015; Monti et al., 2013;
Price et al., 2015) were screened to avoid overlooking suitable studies.
Fig. 1 provides a flowchart of the different phases of the relevant lit-
erature search.

Eligibility criteria were the following:

(1) A single session of tDCS or TMS was applied to the left hemisphere
of the cerebral cortex in right-handed participants;

(2) Participants were adult healthy, young native speakers;
(3) The main dependent variable was either naming latency in a picture

naming task or number of words generated in a verbal fluency task;
(4) The stimuli were either categories or letters (for the verbal fluency

tasks), or pictures triggering single-word utterances (i.e., nouns or
verbs, for picture-naming tasks). Studies using printed words as
stimuli were omitted in order to avoid potential confounds with
reading ability, as were studies that required the production of
multi-word utterances or in which a mixture of verbal fluency and
picture naming was used;

(5) All relevant data were provided either in the paper or by the au-
thors upon request, or could be extracted from figures in the pub-
lication;

(6) The article was published in a peer-reviewed English-language
journal;

(7) The study was approved by a medical ethical committee or review
board.

2.2. Data synthesis and analysis

The literature search identified 30 eligible studies. Studies of whichTa
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the full texts were screened, but which did not meet the inclusion cri-
teria, are listed in Supplementary Table 1, along with a reason for their
exclusion. For the eligible studies, the means, standard deviations, and
sample sizes for all experimental and control conditions were collected

(naming latencies for the picture naming tasks and number of words
generated for the verbal fluency tasks). If this information was provided
in graphs rather than tables, the relevant values were extracted using
the software Plot Digitizer (http://plotdigitizer.sourceforge.net/).

Fig. 2. Forest plot of the effect sizes of the studies included in the meta-analysis investigating the efficacy of non-invasive brain stimulation as a tool of investigating language production
in healthy participants.

Table 2
Results of meta-analysis, for all studies and specific subsets.

Comparison N E 95% CI Z p Q p I2 Fail-safe

Overall 45 0.289 0.181–0.398 5.214 < .0001 25.248 .990 0.00 274

tDCS vs. TMS
tDCS only 26 0.225 0.094–0.356 3.369 < .001 10.116 .996 0.00 51
TMS only 19 0.430 0.235–0.625 4.331 < .001 12.209 .836 0.00 74

Sham vs. no sham
Sham-controlled 36 0.267 0.149–0.386 4.429 < .0001 17.882 .993 0.00 148
Not sham-controlled 9 0.410 0.133–0.686 2.903 .004 6.505 .591 0.00 11

Frontal vs. temporal
Frontal stimulation 27 0.275 0.139–0.411 3.953 < .001 14.344 .968 0.00 83
Temporal stimulation 12 0.336 0.101–0.572 2.800 .005 5.454 .907 0.00 13

Picture naming vs. verbal fluency
Picture naming 24 0.356 0.192–0.521 4.239 < .0001 15.125 .890 0.00 89
Verbal fluency 11 0.316 0.114–0.518 3.066 .002 6.366 .784 0.00 16

Online vs. offline
Online NIBS 23 0.280 0.131–0.428 3.700 < .001 13.225 .927 0.00 59
Offline NIBS 22 0.301 0.141–0.461 3.678 < .001 11.987 .940 0.00 56

Current density of target electrode
<0.05mA/cm2 5 0.308 0.013–0.603 2.046 .041 4.986 .289 16.13 2
0.06–0.07mA/cm2 17 0.226 0.054–0.398 2.576 .010 3.898 .999 0.00 13
>0.08mA/cm2 4 0.124 −0.182 to 0.430 0.797 .425 0.505 .918 0.00 0
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Additionally, if the reported data were not sufficient or inconsistent, the
corresponding author of the paper in question was contacted and asked
to provide this information. If an experiment reported several condi-
tions (e.g., in terms of semantic category and naming cycle for semantic
blocking tasks or in terms of different distractor conditions in PWI
tasks), the reported values were averaged for the stimulation and the
control condition in order to receive an estimate of the overall effect of
stimulation. All data points were coded in terms of their treatment
(TMS vs. tDCS), the control condition (sham vs. no stimulation), the
stimulated brain region (IFG, MTG, STG, DLPFC, IPL, or ATL), the task
used (picture naming, semantic blocking, picture-word interference, or
semantic fluency), the time of NIBS application (online vs. offline), and
the current density of the target electrode.

For all reported comparisons (i.e., stimulation vs. control condi-
tions) we calculated Hedges’ d (Rosenberg, Adams, & Gurevitch, 2000).
This is an adaptation of Hedges’ g (Hedges & Olkin, 1985) – calculated
as the difference between the mean of the experimental condition and
the mean of the control condition, divided by the pooled standard de-
viation – which takes into account the often low sample sizes in pre-
viously published NIBS studies by multiplying the effect size with a
small sample size correction. We were interested in the magnitude of
the effect so we calculated the absolute effect size values. In order to
avoid entering several data points from one experiment into the ana-
lysis, effect sizes originating from a single experiment were aggregated
to yield a single measure per experiment. However, if several control
conditions were tested which allowed for a more specific comparison of
experimental variables (e.g., comparing cathodal and anodal stimula-
tion, or different brain regions within one experiment), separate effect
sizes per experiment were entered into the analysis.

We computed the cumulative effect size (i.e., the aggregated mag-
nitude of the included studies’ effect sizes, E ) and the 95% confidence
intervals (CI) using a weighted average (Hedges & Olkin, 1985). All
effect sizes were entered in a random effects model. As estimates of
study heterogeneity, we report Q and I2 values.

All effect size calculations and summary analyses were conducted
using MetaWin (version 2.1, Rosenberg et al., 2000) and the metafor
package (version 1.9-9, Viechtbauer, 2010) in R (version 3.3.3, R Core
Team, 2017). Additional ANOVAs were run using the ez package
(version 4.4.0, Lawrence, 2016).

3. Results

In total, 45 effect sizes originating from 30 studies including 655
healthy participants were analysed (Table 1). None of the studies re-
ported any adverse events after applying stimulation. A significant ef-
fect of NIBS was found for behavioural performance (Z=5.214,
p < .0001), indicating that applying NIBS is capable of modulating
speech production processes in healthy speakers. The overall weighted
mean effect size for all included studies was 0.289 (95% CI:
0.181–0.398). The test for heterogeneity was not significant
(Q=25.248, p= .990), showing that the variance between studies was
not larger than is to be expected when including random sample error.
Rosenberg’s fail-safe number for all studies was 274, implying that at
least 274 studies publishing null effects would be required to invalidate
the significant effect of NIBS on behavioural performance in language
production. Fig. 2 displays the effect sizes and 95% confidence intervals
for all included studies.

Overall, our results suggest that NIBS appears to be an effective tool

Fig. 3. Forest plot of effect sizes, broken down by stimulation method (tDCS vs. TMS).
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to modulate behaviour even in healthy participants. It should however
be noted that the applied tDCS and TMS parameters used in the studies
varied considerably. We therefore performed additional analyses to
examine differences between stimulation type (tDCS vs. TMS), the ap-
plied control condition (sham vs. no stimulation), stimulation area
(frontal vs. temporal), task (picture naming vs. verbal fluency), online
vs. offline application, and current density of the target electrode. The
results for these sub-analyses are summarised in Table 2.

3.1. TMS vs. tDCS

In order to investigate the efficacy of stimulation separately for TMS
(N=16) and tDCS (N=26), respectively, separate meta-analyses were
performed for the two stimulation techniques. The outcomes revealed
significant weighted mean effect sizes of 0.225 (95% CI: 0.094–0.356)
for the tDCS studies and 0.388 (95% CI: 0.178–0.598) for the TMS
studies (see Fig. 3). Furthermore, an ANOVA comparing the effect sizes
yielded a significant main effect of stimulation type (F(1, 43)= 7.583,
p= .009, η2G= .150), indicating that the effect sizes for the TMS studies
were significantly higher than those for the tDCS studies.

3.2. Sham vs. no stimulation as a control condition

To investigate a possible difference in NIBS efficacy depending on
type of control condition, we compared studies that were sham-con-
trolled (N=36) to those that were not (N=9). An ANOVA yielded no
significant main effect of control condition (F(1, 43)= 2.148, p= .150,
η2G= .048). However, separate summary analyses revealed a descrip-
tively larger effect size for studies which were not sham-controlled

(E =0.410, 95% CI: 0.133–0.686) compared to those that were
(E =0.267, 95% CI: 0.149–0.386) (see Fig. 4).

3.3. Frontal vs. temporal NIBS

The majority of the studies targeted areas within the left fronto-
temporal language network. To investigate whether one of these re-
gions is more susceptible to NIBS, we selected studies targeting frontal
regions including the left DLPFC and the left IFG (N=27), and tem-
poral regions including the left MTG, STG, and ATL (N=12). An
ANOVA comparing the effect of NIBS on these two regions provided no
evidence for differences in effect sizes (F(1, 37)= 0.437, p= .513,
η2G= .012). That is, both frontal and temporal NIBS influenced lan-
guage production in healthy speakers, with no quantitative difference
in the magnitude of the effect between the two target locations (for
frontal regions: E =0.275, 95% CI: 0.139–0.411; for temporal regions:
E =0.336, 95% CI: 0.101–0.572; see Fig. 5).

3.4. Picture naming vs. verbal fluency

To examine whether NIBS is more efficient for verbal fluency or
picture naming tasks, we compared studies measuring verbal fluency
(N=11) with pure picture naming studies (N=24; excluding picture-
word interference and semantic blocking tasks to avoid potential con-
founds due to additional experimental conditions). An ANOVA pro-
vided no evidence for a difference in effect sizes between these types of
tasks (F(1, 33)= 0.597, p= .445, η2G= .018). Separate summary ana-
lyses yielded descriptively comparable effect sizes and confidence in-
tervals for verbal fluency tasks (E =0.316, 95% CI: 0.114–0.518) and

Fig. 4. Forest plot of effect sizes, broken down by control condition (sham vs. no sham).
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picture naming tasks (E =0.356, 95% CI: 0.192–0.521) (see Fig. 6).
Because frontal and temporal cortical regions are involved differ-

entially in the tasks employed in the examined studies (see
Introduction), we additionally investigated whether there are differ-
ences in effect sizes for these regions as a function of task (see
Supplementary Table 2). An ANOVA including the factors region (i.e.,
frontal vs. temporal) and task (i.e., picture naming, semantic blocking,
and picture-word interference tasks)1 yielded no evidence for an in-
teraction of these two factors (F(2, 22)= 0.175, p= .840, η2G= .016).
However, it should be noted that sample sizes for these particular sub-
analyses were very small (ranging between 2 and 11 studies). Thus,
future studies are needed to allow for a more reliable estimate.

3.5. Online vs. offline

To investigate the possible influence of applying NIBS prior to or
during the execution of the experimental task, we compared studies
that used an offline protocol (N=22) with studies that used an online
protocol (N=23). An ANOVA provided no evidence for a quantitative
difference between these two protocols (F(1, 43)= 0.031, p= .860,
η2G= .001), and effect sizes were descriptively comparable for both
protocols (online: E =0.280, 95% CI: 0.131–0.428; offline: E =0.301,

95% CI: 0.141–0.461; see Fig. 7).

3.6. Current density of the target electrode

Finally, we investigated whether the current density of the target
electrode in tDCS studies has a differential effect on performance. We
treated current density as a categorical variable split in three categories
(low: current density ≤ 0.05mA/cm2; medium: current density be-
tween 0.06 and 0.07mA/cm2; high: current density ≥ 0.08mA/cm2).
An ANOVA yielded no significant main effect of current density (F
(2, 23)= 0.747, p= .485, η2G= .061). Descriptively, the largest effects
were observed with low (E =0.308, 95% CI: 0.013–0.603) and
medium current densities (E =0.226, 95% CI: 0.054–0.398), whereas
current densities above 0.08mA/cm2 showed no significant effect size
(E =0.124, 95% CI: −0.182 to 0.430; see Fig. 8). However, it needs to
be noted that most studies used current densities which we classified as
“medium” (typically with a surface area between 25 and 35 cm2 and a
current intensity of 1.5–2mA), whereas both the “low” and the “high”
category are less common, thus reducing the statistical power for these
groups.

4. Discussion

The current meta-analysis evaluated the efficacy of non-invasive
brain stimulation on performance changes in language production tasks
in healthy speakers. As we have reviewed in the Introduction, studies
which investigated the effects of NIBS on language production perfor-
mance in healthy speakers show mixed results. Importantly, the
methodological approaches vary substantially between studies as well,

Fig. 5. Forest plot of effect sizes, broken down by stimulation region (frontal vs. temporal).

1 For this analysis, fluency tasks had to be removed because no single study has ex-
amined the effect of NIBS over temporal regions during these tasks. However, we ran
additional sub-analyses for fluency tasks following frontal stimulation, both averaged
across and broken down by task type (semantic vs. letter fluency). Interestingly, studies
examining semantic fluency reported a stronger effect of NIBS over frontal regions, al-
though Birn et al. (2010) showed that the left IFG is activated more during letter com-
pared to semantic fluency tasks.
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for example, with respect to the stimulation technique, site, duration,
control condition and behavioural paradigm. While there is study-spe-
cific evidence for the efficacy of NIBS in language production research,
the methodological variability between studies is large. As a result, it is
not clear to what extent these differences affect the behavioural out-
come.

To this end, we meta-analysed the effect sizes from studies mea-
suring picture naming latencies or verbal fluency scores in healthy
participants in which either TMS or tDCS was applied to probe the
causal involvement of specific cortical areas in unimpaired language
production. The overall effect size for all studies combined was small,
but comparable to the results found in other meta-analyses in-
vestigating the influence of NIBS on cognitive function in healthy
participants (e.g., Brunoni & Vanderhasselt, 2014; Dedoncker, Brunoni,
Baeken, & Vanderhasselt, 2016; Hill et al., 2016; Mancuso, Ilieva,
Hamilton, & Farah, 2016; Schutter & Wischnewski, 2016). A potential
reason for this relatively small effect size is that no clear-cut experi-
mental standards exist. This introduces a large methodological varia-
bility between studies, which hampers both their comparability as well
as the efficacy of the stimulation to effectively induce performance
changes. For instance, for TMS studies, no valid threshold procedure
(like motor-evoked potentials for the motor cortex or phosphene in-
duction for the visual cortex) exists to reliably determine individual
thresholds. Previous studies on language production used stimulation
intensities between 100 and 120% of the individual motor threshold or
fixed stimulation intensities for all participants. In both cases, however,
it is unclear if such a measure is the most reliable way to stimulate areas
outside of the motor cortex. Inducing speech arrest may be a possible
way of quantifying individual “speech thresholds”. Following Pascual-
Leone, Gates, and Dhuna (1991), who had successfully induced speech

arrest in epileptic patients by applying rTMS to Broca’s area, Epstein
et al. (1996) contrasted the effect of stimulation frequencies between 4
and 32 Hz in a counting task. They found that applying 20 or 40 pulses
over a period of five seconds (i.e., at 4 and 8 Hz, respectively) allowed
for the induction of complete speech arrest without excessive muscle
disturbances or pain sensations of the participants, which led the au-
thors to conclude that this frequency was suitable for widespread ap-
plication, e.g., to measure speech lateralization (see also Epstein et al.,
1999). However, to the best our knowledge, none of the TMS studies
that investigated language production in healthy participants has used
this procedure. Similarly, for tDCS studies, individual cortical suscept-
ibility to stimulation may differ (Parazzini, Fiocchi, Liorni, &
Ravazzani, 2015), inducing different levels of excitability between
participants. Also, the placement of the reference electrode, the size of
both the target and reference electrode, as well as the stimulation fre-
quencies vary substantially between studies, which hampers compar-
ability between studies because different montages and intensities
cause different electric field distributions across the cortex (Bastani &
Jaberzadeh, 2013; Bastani, Jaberzadeh, Paulus, Rothwell, & Lemon,
2013; Bikson, Datta, Rahman, & Scaturro, 2010; Bikson et al., 2017;
Rampersad et al., 2014; Saturnino, Antunes, & Thielscher, 2015). Fur-
ther resources should be invested to explore the parameter space that
allows for a reliable modulation of production performance while re-
ducing the amount of inter- and intraindividual variability in the re-
sponse to NIBS. Crucially, our results provide no evidence that applying
NIBS online vs. offline, as well as the current density of the target
electrode, affect weighted effect sizes.

On another note, different tasks might be differentially sensitive to
performance changes induced by NIBS. We have shown that perfor-
mance in both verbal fluency and pure picture naming tasks can be

Fig. 6. Forest plot of effect sizes, broken down by task (verbal fluency vs. picture naming).
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Fig. 7. Forest plot of effect sizes, broken down by application time (online vs. offline).

Fig. 8. Forest plot of effect sizes, broken down by current density of active electrode (≤0.05mA/cm2 vs. 0.06–0.07mA/cm2 vs. ≥0.08mA/cm2).
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effectively modulated using NIBS. However, we cannot make a con-
clusive point with respect to the efficacy of NIBS in more specific pic-
ture naming paradigms (i.e., PWI, semantic blocking), as we have fo-
cused our analysis on the overall effect of NIBS as opposed to more
specific experimental conditions. Westwood and Romani (2017) pro-
vide some evidence that at least tDCS may not be useful for examining
semantically specific effects during language production. However, it
should be noted that their analysis is based on a small number of ex-
periments, so clearly more studies are needed before strong conclusions
can be drawn.

It needs to be noted that the apparent advantage of TMS over tDCS
is confounded with the physical sensations induced by either method.
While participants typically cannot reliably differentiate between
verum and sham tDCS, TMS arguably induces a stronger physical sen-
sation at the stimulation site. Although some studies use so-called
placebo coils or stimulate several areas (i.e., including at least one
control region which is not expected to affect the outcome), many so far
have only compared performance with real TMS to performance without
the application of TMS. Evidently, in these cases, participants know
when they are being stimulated and this could bias the results. We also
wish to stress that for the TMS group, we pooled studies applying low-
frequency (1 Hz) rTMS with studies using high-frequency (≥ 10 Hz)
single- or triple-pulse TMS, which have different effects on cortical
excitability. However, further subdividing the TMS studies was not
meaningful given the very small sample sizes. Despite the larger effect
sizes of TMS compared to tDCS, this finding should be thus treated with
caution.

In conclusion, NIBS is a viable method to investigate the relations
between cortical regions and language production in healthy volunteers
and can contribute to the understanding of the neurobiology underlying
unimpaired language production. Nevertheless, more fundamental
studies are needed to explore under which conditions its efficacy can be
homogenised within and between participants. Additionally, studies
applying tDCS over several sessions, as is practice in clinical studies,
may provide further insights into how efficacy can be improved.
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